Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spectroscopy of an ensemble of In0.50Ga0.50As quantum dots following highly localized hole injection by a scanning tunneling microscope

Identifieur interne : 00DD63 ( Main/Repository ); précédent : 00DD62; suivant : 00DD64

Spectroscopy of an ensemble of In0.50Ga0.50As quantum dots following highly localized hole injection by a scanning tunneling microscope

Auteurs : RBID : Pascal:02-0540148

Descripteurs français

English descriptors

Abstract

Luminescence spectroscopy following highly localized carrier injection into an ensemble of indium gallium arsenide quantum dots (QDs), where high spatial resolution is achieved by employing a scanning tunneling microscope, is presented. From the low-temperature tunneling current and the gap voltage dependences of the hole injection conditions, the relationship between carrier density, energy, and capture has been examined. In contrast to the inhomogeneously broadened photoluminescence, low tunneling current induced luminescence exhibits sharp excitonic lines of typical widths of 1.5-2.0 meV. With increasing tunneling current and gap voltage, the carrier dynamics of carrier diffusion into a real QD population manifest themselves through state-filling effects, increased carrier diffusion, and the population of the neighboring QDs.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0540148

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Spectroscopy of an ensemble of In
<sub>0.50</sub>
Ga
<sub>0.50</sub>
As quantum dots following highly localized hole injection by a scanning tunneling microscope</title>
<author>
<name sortKey="Johal, T K" uniqKey="Johal T">T. K. Johal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Nanotechnology Laboratory, INFM-Unita di Lecce, Dipartimento di Ingegneria dellInnovazione, Universita di Lecce, via Arnesano, I-73100 Lecce, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>National Nanotechnology Laboratory, INFM-Unita di Lecce, Dipartimento di Ingegneria dellInnovazione, Universita di Lecce, via Arnesano, I-73100 Lecce</wicri:regionArea>
<wicri:noRegion>I-73100 Lecce</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pagliara, G" uniqKey="Pagliara G">G. Pagliara</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Nanotechnology Laboratory, INFM-Unita di Lecce, Dipartimento di Ingegneria dellInnovazione, Universita di Lecce, via Arnesano, I-73100 Lecce, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>National Nanotechnology Laboratory, INFM-Unita di Lecce, Dipartimento di Ingegneria dellInnovazione, Universita di Lecce, via Arnesano, I-73100 Lecce</wicri:regionArea>
<wicri:noRegion>I-73100 Lecce</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rinaldi, R" uniqKey="Rinaldi R">R. Rinaldi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Nanotechnology Laboratory, INFM-Unita di Lecce, Dipartimento di Ingegneria dellInnovazione, Universita di Lecce, via Arnesano, I-73100 Lecce, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>National Nanotechnology Laboratory, INFM-Unita di Lecce, Dipartimento di Ingegneria dellInnovazione, Universita di Lecce, via Arnesano, I-73100 Lecce</wicri:regionArea>
<wicri:noRegion>I-73100 Lecce</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Passaseo, A" uniqKey="Passaseo A">A. Passaseo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Nanotechnology Laboratory, INFM-Unita di Lecce, Dipartimento di Ingegneria dellInnovazione, Universita di Lecce, via Arnesano, I-73100 Lecce, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>National Nanotechnology Laboratory, INFM-Unita di Lecce, Dipartimento di Ingegneria dellInnovazione, Universita di Lecce, via Arnesano, I-73100 Lecce</wicri:regionArea>
<wicri:noRegion>I-73100 Lecce</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cingolani, R" uniqKey="Cingolani R">R. Cingolani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Nanotechnology Laboratory, INFM-Unita di Lecce, Dipartimento di Ingegneria dellInnovazione, Universita di Lecce, via Arnesano, I-73100 Lecce, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>National Nanotechnology Laboratory, INFM-Unita di Lecce, Dipartimento di Ingegneria dellInnovazione, Universita di Lecce, via Arnesano, I-73100 Lecce</wicri:regionArea>
<wicri:noRegion>I-73100 Lecce</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lomascolo, M" uniqKey="Lomascolo M">M. Lomascolo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Istituto per lo studio di nuovi Materiali per lElettronica IME-CNR, University of Lecce, I-73100 Lecce, Italy</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Istituto per lo studio di nuovi Materiali per lElettronica IME-CNR, University of Lecce, I-73100 Lecce</wicri:regionArea>
<wicri:noRegion>I-73100 Lecce</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taurino, A" uniqKey="Taurino A">A. Taurino</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Istituto per lo studio di nuovi Materiali per lElettronica IME-CNR, University of Lecce, I-73100 Lecce, Italy</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Istituto per lo studio di nuovi Materiali per lElettronica IME-CNR, University of Lecce, I-73100 Lecce</wicri:regionArea>
<wicri:noRegion>I-73100 Lecce</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Catalano, M" uniqKey="Catalano M">M. Catalano</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Istituto per lo studio di nuovi Materiali per lElettronica IME-CNR, University of Lecce, I-73100 Lecce, Italy</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Istituto per lo studio di nuovi Materiali per lElettronica IME-CNR, University of Lecce, I-73100 Lecce</wicri:regionArea>
<wicri:noRegion>I-73100 Lecce</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Phaneuf, R" uniqKey="Phaneuf R">R. Phaneuf</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Materials and Nuclear Engineering, University of Maryland</s1>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>Laboratory for Physical Sciences, College Park, Maryland 20742</s1>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Laboratory for Physical Sciences, College Park</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0540148</idno>
<date when="2002-10-15">2002-10-15</date>
<idno type="stanalyst">PASCAL 02-0540148 AIP</idno>
<idno type="RBID">Pascal:02-0540148</idno>
<idno type="wicri:Area/Main/Corpus">00E480</idno>
<idno type="wicri:Area/Main/Repository">00DD63</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1098-0121</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter mater. phys.</title>
<title level="j" type="main">Physical review. B, Condensed matter and materials physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Excitons</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>Hole density</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Photoluminescence</term>
<term>STM</term>
<term>Semiconductor quantum dots</term>
<term>Tunnel effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7867H</term>
<term>7321L</term>
<term>0779</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Point quantique semiconducteur</term>
<term>Densité trou</term>
<term>Exciton</term>
<term>Effet tunnel</term>
<term>Photoluminescence</term>
<term>STM</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Luminescence spectroscopy following highly localized carrier injection into an ensemble of indium gallium arsenide quantum dots (QDs), where high spatial resolution is achieved by employing a scanning tunneling microscope, is presented. From the low-temperature tunneling current and the gap voltage dependences of the hole injection conditions, the relationship between carrier density, energy, and capture has been examined. In contrast to the inhomogeneously broadened photoluminescence, low tunneling current induced luminescence exhibits sharp excitonic lines of typical widths of 1.5-2.0 meV. With increasing tunneling current and gap voltage, the carrier dynamics of carrier diffusion into a real QD population manifest themselves through state-filling effects, increased carrier diffusion, and the population of the neighboring QDs.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1098-0121</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter mater. phys.</s0>
</fA03>
<fA05>
<s2>66</s2>
</fA05>
<fA06>
<s2>15</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Spectroscopy of an ensemble of In
<sub>0.50</sub>
Ga
<sub>0.50</sub>
As quantum dots following highly localized hole injection by a scanning tunneling microscope</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JOHAL (T. K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PAGLIARA (G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RINALDI (R.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PASSASEO (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CINGOLANI (R.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LOMASCOLO (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>TAURINO (A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>CATALANO (M.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>PHANEUF (R.)</s1>
</fA11>
<fA14 i1="01">
<s1>National Nanotechnology Laboratory, INFM-Unita di Lecce, Dipartimento di Ingegneria dellInnovazione, Universita di Lecce, via Arnesano, I-73100 Lecce, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Istituto per lo studio di nuovi Materiali per lElettronica IME-CNR, University of Lecce, I-73100 Lecce, Italy</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Materials and Nuclear Engineering, University of Maryland</s1>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Laboratory for Physical Sciences, College Park, Maryland 20742</s1>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s2>155313-155313-6</s2>
</fA20>
<fA21>
<s1>2002-10-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2002 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>02-0540148</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter and materials physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Luminescence spectroscopy following highly localized carrier injection into an ensemble of indium gallium arsenide quantum dots (QDs), where high spatial resolution is achieved by employing a scanning tunneling microscope, is presented. From the low-temperature tunneling current and the gap voltage dependences of the hole injection conditions, the relationship between carrier density, energy, and capture has been examined. In contrast to the inhomogeneously broadened photoluminescence, low tunneling current induced luminescence exhibits sharp excitonic lines of typical widths of 1.5-2.0 meV. With increasing tunneling current and gap voltage, the carrier dynamics of carrier diffusion into a real QD population manifest themselves through state-filling effects, increased carrier diffusion, and the population of the neighboring QDs.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C21L</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00G79</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7867H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7321L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>0779</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Densité trou</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Hole density</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Exciton</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Excitons</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Effet tunnel</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Tunnel effect</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>STM</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>STM</s0>
</fC03>
<fN21>
<s1>316</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0245M000970</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00DD63 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00DD63 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0540148
   |texte=   Spectroscopy of an ensemble of In0.50Ga0.50As quantum dots following highly localized hole injection by a scanning tunneling microscope
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024